public class BackPropLearning extends java.lang.Object implements NNTrainingScheme
| Constructor and Description |
|---|
BackPropLearning(double learningRate,
double momentum) |
| Modifier and Type | Method and Description |
|---|---|
static Vector |
calculateBiasUpdates(LayerSensitivity layerSensitivity,
double alpha) |
Vector |
calculateBiasUpdates(LayerSensitivity layerSensitivity,
double alpha,
double momentum) |
static Matrix |
calculateWeightUpdates(LayerSensitivity layerSensitivity,
Vector previousLayerActivationOrInput,
double alpha) |
Matrix |
calculateWeightUpdates(LayerSensitivity layerSensitivity,
Vector previousLayerActivationOrInput,
double alpha,
double momentum) |
void |
processError(FeedForwardNeuralNetwork network,
Vector error) |
Vector |
processInput(FeedForwardNeuralNetwork network,
Vector input) |
void |
setNeuralNetwork(FunctionApproximator fapp) |
public void setNeuralNetwork(FunctionApproximator fapp)
setNeuralNetwork in interface NNTrainingSchemepublic Vector processInput(FeedForwardNeuralNetwork network, Vector input)
processInput in interface NNTrainingSchemepublic void processError(FeedForwardNeuralNetwork network, Vector error)
processError in interface NNTrainingSchemepublic Matrix calculateWeightUpdates(LayerSensitivity layerSensitivity, Vector previousLayerActivationOrInput, double alpha, double momentum)
public static Matrix calculateWeightUpdates(LayerSensitivity layerSensitivity, Vector previousLayerActivationOrInput, double alpha)
public Vector calculateBiasUpdates(LayerSensitivity layerSensitivity, double alpha, double momentum)
public static Vector calculateBiasUpdates(LayerSensitivity layerSensitivity, double alpha)