Consider the following toy grammar:
> $S \rightarrow NP\space VP$
> $NP \rightarrow Noun$
> $NP \rightarrow NP\space and\space NP$
> $NP \rightarrow NP\space PP$
> $VP \rightarrow Verb$
> $VP \rightarrow VP\space and \space VP$
> $VP \rightarrow VP\space PP$
> $PP \rightarrow Prep\space NP$
> $Noun \rightarrow Sally\space; pools\space; streams\space; swims$
> $Prep \rightarrow in$
> $Verb \rightarrow pools\space; streams\space; swims$
1. Show all the parse trees in this grammar for the sentence “Sally swims in streams and pools.”
2. Show all the table entries that would be made by a (non-probabalistic) CYK parser on this sentence.

Consider the following toy grammar:
> $S \rightarrow NP\space VP$
> $NP \rightarrow Noun$
> $NP \rightarrow NP\space and\space NP$
> $NP \rightarrow NP\space PP$
> $VP \rightarrow Verb$
> $VP \rightarrow VP\space and \space VP$
> $VP \rightarrow VP\space PP$
> $PP \rightarrow Prep\space NP$
> $Noun \rightarrow Sally\space; pools\space; streams\space; swims$
> $Prep \rightarrow in$
> $Verb \rightarrow pools\space; streams\space; swims$
1. Show all the parse trees in this grammar for the sentence “Sally swims in streams and pools.”
2. Show all the table entries that would be made by a (non-probabalistic) CYK parser on this sentence.





Submit Solution

Your Display Name
Email
Solution