Consider a vocabulary with only four propositions, $A$, $B$, $C$, and
$D$. How many models are there for the following sentences?
1. $B\lor C$.
2. $\lnot A\lor \lnot B \lor \lnot C \lor \lnot D$.
3. $(A{\:\;{\Rightarrow}\:\;}B) \land A \land \lnot B \land C \land D$.
1. $B\lor C$.
2. $\lnot A\lor \lnot B \lor \lnot C \lor \lnot D$.
3. $(A{\:\;{\Rightarrow}\:\;}B) \land A \land \lnot B \land C \land D$.
Consider a vocabulary with only four propositions, $A$, $B$, $C$, and
$D$. How many models are there for the following sentences?
1. $B\lor C$.
2. $\lnot A\lor \lnot B \lor \lnot C \lor \lnot D$.
3. $(A{\:\;{\Rightarrow}\:\;}B) \land A \land \lnot B \land C \land D$.