Explain what is wrong with the following proposed definition of the set
membership predicate
$$ {\forall,x,s;;} x \in {x|s} $$ $$ {\forall,x,s;;} x \in s \implies {\forall,y;;} x \in {y|s} $$
$$ {\forall,x,s;;} x \in {x|s} $$ $$ {\forall,x,s;;} x \in s \implies {\forall,y;;} x \in {y|s} $$
Explain what is wrong with the following proposed definition of the set
membership predicate
$$ {\forall,x,s;;} x \in {x|s} $$ $$ {\forall,x,s;;} x \in s \implies {\forall,y;;} x \in {y|s} $$