Consider the following set of examples, each with six inputs and one target output:
$$ \begin{array} {|r|r|}\hline \textbf{Example} & A_1 & A_2 & A_3 & A_4 & A_5 & A_6 & A_7 & A_8 & A_9 & A_{10} & A_{11} & A_{12} & A_{13} & A_{14} \\ \hline \textbf{x}_1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \textbf{x}_2 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ \textbf{x}_3 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ \textbf{x}_4 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ \textbf{x}_5 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ \textbf{x}_6 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ \textbf{T} & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array} $$ 1. Run the perceptron learning rule on these data and show the final weights.
2. Run the decision tree learning rule, and show the resulting decision tree.
3. Comment on your results.

Consider the following set of examples, each with six inputs and one target output:
$$ \begin{array} {|r|r|}\hline \textbf{Example} & A_1 & A_2 & A_3 & A_4 & A_5 & A_6 & A_7 & A_8 & A_9 & A_{10} & A_{11} & A_{12} & A_{13} & A_{14} \\ \hline \textbf{x}_1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \textbf{x}_2 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ \textbf{x}_3 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ \textbf{x}_4 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ \textbf{x}_5 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ \textbf{x}_6 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ \textbf{T} & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array} $$ 1. Run the perceptron learning rule on these data and show the final weights.
2. Run the decision tree learning rule, and show the resulting decision tree.
3. Comment on your results.





Submit Solution

Your Display Name
Email
Solution