$$ \begin{array} {|r|r|}\hline \textbf{Example} & A_1 & A_2 & A_3 & A_4 & y \\ \hline \textbf{x}_1 & 1 & 0 & 0 & 0 & 1 \\ \textbf{x}_2 & 1 & 0 & 1 & 1 & 1 \\ \textbf{x}_3 & 0 & 1 & 0 & 0 & 1 \\ \textbf{x}_4 & 0 & 1 & 1 & 0 & 0 \\ \textbf{x}_5 & 1 & 1 & 0 & 1 & 1 \\ \textbf{x}_6 & 0 & 1 & 0 & 1 & 0 \\ \textbf{x}_7 & 0 & 0 & 1 & 1 & 1 \\ \textbf{x}_8 & 0 & 0 & 1 & 0 & 0 \\ \hline \end{array} $$
Construct a decision list to classify the data below.
Select tests to be as small as possible (in terms of attributes),
breaking ties among tests with the same number of attributes by
selecting the one that classifies the greatest number of examples
correctly. If multiple tests have the same number of attributes and
classify the same number of examples, then break the tie using
attributes with lower index numbers (e.g., select $A_1$ over $A_2$).
$$
\begin{array}
{|r|r|}\hline \textbf{Example} & A_1 & A_2 & A_3 & A_4 & y \\
\hline \textbf{x}_1 & 1 & 0 & 0 & 0 & 1 \\
\textbf{x}_2 & 1 & 0 & 1 & 1 & 1 \\
\textbf{x}_3 & 0 & 1 & 0 & 0 & 1 \\
\textbf{x}_4 & 0 & 1 & 1 & 0 & 0 \\
\textbf{x}_5 & 1 & 1 & 0 & 1 & 1 \\
\textbf{x}_6 & 0 & 1 & 0 & 1 & 0 \\
\textbf{x}_7 & 0 & 0 & 1 & 1 & 1 \\
\textbf{x}_8 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array}
$$